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Abstract
We calculate the helicity and chirality effects experienced by a spin-1/2 particle
subjected to classical electromagnetic and gravitational fields. The helicity
evolution is then determined in the non-relativistic, relativistic and ultra-
relativistic regimes. We find that inertia gravitation can distinguish between
helicity and chirality. Helicity is not conserved, in general, even when the
particles are massless. In this case, however, the inertial fields can hardly be
applied to the fermions.

PACS numbers: 03.65.Pm, 04.20.Cv, 04.48−y

1. Introduction

Over the last 40 years, experimental connections between inertia gravitation and quantum
mechanics have been established in a limited number of instances. They confirm that inertia and
Newtonian gravitation affect particle wavefunctions in ways that are consistent with covariant
generalizations of known wave equations. Typical examples are represented by the Schrödinger
and Klein-Gordon equations that have been successfully used to describe the behaviour of
superconducting electrons [1, 2] and neutrons [3] in inertial–gravitational fields in a quasi-
classical regime. Although the lengths scales involved, of order 10−3 cm for superelectrons
[4] and 10−13 cm for neutrons [5], are far from comparable with Planck’s length, which is
thought to mark the onset of quantum gravity, the results extend the validity of certain aspects
of relativistic inertia gravitation by about 30 orders of magnitude.

Quantum particles are sensitive probes of inertia and, ultimately, gravity [6]. The
unavoidable presence of inertial effects in precise tests of fundamental theories requires an
attentive study of all aspects of inertia. As the length scales decrease, fundamental quantum
properties of particles, such as spin and discrete symmetries, come into play [7]. This is the
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case for spin-1/2 particles, where they can be used in a variety of experimental situations and
energy ranges, while still retaining a non-classical behaviour.

Particle accelerators and storage rings are very apt tools for studying inertia, in particular
rotational inertia. The forerunner of these studies is the work by Bell and Leinaas [8]. They
were able to calculate the effect of the coupling of spin with the quantum contributions δω on
the angular velocity. This is a kind of quantum Mashhoon effect that is probably responsible
for a residual electron depolarization in storage rings. Issues of interest concern the behaviour
of helicity [9] and chirality in the presence of inertia. If ω is classical, then spin has a
precession frequency that equals the orbital frequency for fermions with g = 2. However,
when κ ≡ (g − 2)/2 �= 0, the spin vector undergoes an additional precession of frequency
κeB/m that is measured with extreme accuracy in muon g − 2 experiments [10]. Persistent
residual discrepancies between standard model calculations and experiment have then been
interpreted by one of us [7] as possible violations of the discrete symmetries in rotational
inertia. These would arise if the gyro-gravitational ratio of the muon differs from 1. There
is a similarity here with the electromagnetic case, where g = 2 is required by the Dirac
equation, but not by quantum electrodynamics. Some unresolved problems exist regarding
the helicity of massless particles due to rotational inertia, which in Minkowski space-time is a
conserved quantity. This property may not hold true in the presence of inertial–gravitational
fields, as suggested by Mashhoon for photons [11, 12]. Cai and Papini [13] and Papini [14]
found that spin-rotation coupling induces oscillations between massive left- and right-handed
neutrinos (with non-vanishing magnetic moment), and that these oscillations persist in the limit
of vanishing mass. Mergulhão [15] concluded that the helicity of massless neutrinos is not
conserved when gravitational fields are present. On the contrary, a calculation by Aldovrandi
et al [16] based on linearized, scalar quantum gravity shows that helicity is conserved for
massless fermions.

Our purpose here is to re-examine some of these questions starting from Hamiltonians that
can be derived directly from the covariant Dirac equation [17]. Within the context of general
relativity, comprehensive studies of the Dirac equation were conducted by De Oliveira and
Tiomno [18] and Peres [19]. Other authors introduce inertial interactions by means of unitary
transformations. This is the approach taken by Bell and Leinaas [8]. Their work represents an
extension of well-known properties of the Schrödinger equation to the relativistic regime, but
cannot be readily applied to gravitational fields. More recently, Hehl and Ni [20] have derived
a comprehensive Hamiltonian using special relativity, whereas Obukhov [21] has discussed
some of the limits of the most frequently used approximations. Experimentally, the validity of
the covariant Dirac equation in an inertial–gravitational context finds support in the tests of the
Werner et al [22] and Bonse-Wroblewski [23] effects, and in the fact that spin-rotation coupling
faithfully reproduces the essential features of g − 2 experiments without the introduction of
ad hoc arguments [24, 25]. We use below the formalism of general relativity that treats both
inertial and gravitational fields in a unified way, but also avail ourselves of solutions that are
exact to first-order in the weak-field approximation [13, 17]. We then develop suitable low-
and high-energy approximations.

The purpose of this paper is to study the time rate of change of helicity and chirality for a
massive, accelerated, charged spin-1/2 particle with total magnetic moment µ = (1 + κ)µ0,
where κµ0 is the anomalous part of the magnetic moment of the particle and µ0 is the Bohr
magneton. The paper is organized as follows. Section 2 describes the Dirac Hamiltonian
for a spin-1/2 particle under non-uniform acceleration and rotation. In addition to the
original Hamiltonian, low- and high-energy approximations corresponding to non-relativistic
and ultra-relativistic particle motion are derived via the Foldy–Wouthuysen (FW) [26] and
Cini–Touschek (CT) [27] transformations, respectively. In section 3, we calculate the spin-flip



Helicity precession of spin-1/2 particles 8331

transition rate for each of the representations of the Hamiltonian. This is followed in section
4 by the evaluation of the helicity operator’s time evolution. Here it is shown that a non-zero
helicity precession emerges due solely to the gravitational interactions found in the Berry’s
phase approach [13, 28–30], even when the particle is massless. Section 5 describes the chiral
transition rate for a spin-1/2 particle in accelerated motion, and is followed by the conclusions
in section 6.

2. Dirac Hamiltonian for an accelerated spin-1/2 particle

2.1. Original representation

Given the covariant Dirac equation4,[
iγµ(x)Dµ − m

h̄

]
ψ(x) = 0, (2.1)

where m is the particle rest mass, Dµ ≡ ∇µ + i�µ is the covariant derivative operator with
∇µ the usual covariant derivative on index-labelled tensors and �µ is the spinor connection,
we seek to derive a corresponding Dirac Hamiltonian in a general co-ordinate frame. The γ
matrices {γµ(x)} satisfy {γµ(x), γν(x)} = 2gµν(x) andDµγ

ν = 0. The metric is described as

g = ηµ̂ν̂e
µ̂ ⊗ eν̂, (2.2)

where we use a set of orthonormal tetrads [31] {eµ̂} and basis one-forms {eµ̂} labelled by
indices with carets and satisfying the condition 〈eµ̂, eν̂〉 = δµ̂ν̂ to define a local Lorentz frame.
With vierbein sets {eα̂µ}, {eµα̂} satisfying eα̂ = eα̂β eβ and eα̂ = eβα̂ eβ, such that

eα̂µe
µ
β̂ = δα̂β̂,

eµα̂e
α̂
ν = δµν, (2.3)

gµν = ηα̂β̂e
α̂
µe
β̂
ν, (2.4)

we can relate the general metric to its Minkowski counterpart. The spinor connection is then

�µ = − 1
4σ

αβ(x)�αβµ = − 1
4σ

α̂β̂�α̂β̂µ̂e
µ̂
µ, (2.5)

where σα̂β̂ = 1
2 i[γα̂, γβ̂] are the Minkowski space–time spin matrices and from the Cartan

equation of differential forms

deµ̂ + �µ̂β̂α̂e
α̂ ∧ eβ̂ = 0, (2.6)

we obtain �α̂β̂µ̂, the Ricci rotation coefficients. It is shown that, by arranging (2.1) into a
Schrödinger form, the Hamiltonian in general space–time co-ordinates is ih̄ ∂0ψ(x) = Hψ(x),
where

H = (g00)−1e0
µ̂[γµ̂m+ ejν̂(η

µ̂ν̂ − iσµ̂ν̂)(−ih̄∇j + h̄ γj)] + h̄ �0. (2.7)

The orthonormal tetrad [20] for a spin-1/2 particle under accelerated motion with spatial
rotational freedom is

e0̂ = (1 + a · x)−1[∂0 − (ω × x)k∂k], ek̂ = ∂k (2.8)

4 Geometrized units of c = 1 are assumed throughout, where the metric has signature −2. Space–time indices are
denoted by Greek characters and range from 0 to 3, while spatial indices use Latin characters and range from 1 to 3.
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and the corresponding basis one-form is

e0̂ = (1 + a · x) dx0, ek̂ = dxk + (ω × x)k dx0, (2.9)

where the three-acceleration a of the particle’s frame and the rotation ω of its spatial triad are
generated by external electromagnetic fields. By introducing the electromagnetic potential
and weak gravitational potential via the covariant Berry’s phaseG [17], it follows from (2.7)
that the Hamiltonian generated from (2.8) and (2.9) is

H = (1 + a · x)

[
α · π +mβ + κeh̄

2m
β(iα · E − σ · B)

]
− ih̄

2
(α · a)

− ω · (x × π)− h̄

2
σ · ω + eϕ + α · (∇G)+ (∇0G), (2.10)

where π ≡ p − eA with momentum operator p and electromagnetic vector potential A, the
anomalous magnetic moment κ is inserted by hand, and the covariant Berry’s phase is

G = −1

2

∫ x

P

dzλ γαλ(z)p
α + 1

2

∫ x

P

dzλ (γαλ,β(z)− γβλ,α(z))(x
α − zα)pβ, (2.11)

where pµ is the momentum eigenvalue of the free particle.

2.2. Low- and high-energy approximations of the Hamiltonian

It is possible to consider the precession of a spin-1/2 particle’s helicity state for non-
relativistic and ultra-relativistic motion. To do this, it is necessary that the Hamiltonian (2.10)
undergo a suitable transformation which appropriately describes these energy limits. This is
accomplished by using the FW [26, 32] and CT [27, 33] transformations to, respectively, obtain
the low- and high-energy approximations of the Dirac Hamiltonian. For the special case of the
free-particle Hamiltonian H0 = mβ+ α · π, the resulting low- and high-energy Hamiltonians
HFW

0 and HCT
0 are well known. However, these derivations assume the use of a Cartesian

co-ordinate frame in performing the calculations. We want to generalize this approach by
assuming a general curvilinear co-ordinate frame such that the results can then be applied to
any orthogonal co-ordinate system. To accomplish this, we begin with the unitary operator
exp(iSFW/CT), where

SFW/CT = i

2
ω(q)β

(α · π)

|π| , (2.12)

the momentum operator p in curvilinear co-ordinates is

Pı̂ = −ih̄∇ı̂ = −ih̄
1

λı̂(u)

∂

∂uı̂
, (2.13)

with scale functions λı̂(u), and ω(q) is a constraint function dependent on q ≡ m/|π| and to
be determined5. Then

H
FW/CT
0 = eiSFW/CT [mβ + α · π]e−iSFW/CT = e2iSFW/CT [mβ + α · π]. (2.14)

5 We adopt the sign conventions used by Itzykson and Zuber [34] for the momentum operator and the three-dimensional
Levi–Civita symbol, where εijk = εijk and ε123 ≡ +1, noting that the indices are raised and lowered with the Kronecker
delta δij .
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By Taylor expansion, it is shown that

e2iSFW/CT = 1 − ωβ
(α · π)

|π| + 1

2!

[
ωβ
(α · π)

|π|
]2

− 1

3!

[
ωβ
(α · π)

|π|
]3

+ · · ·
[
ωβ
(α · π)

|π|
]2

= − ω2

|π|2
[
π · π + i

2
εijkσ

ı̂[P̂,Pk̂] − eh̄εijkσ
k̂(∇ı̂A

̂)

]
. (2.15)

It is an important point to recognize that, for general curvilinear co-ordinates, (i/h̄)[P̂,Pk̂] ≡
N̂k̂ �= 0. Therefore, it follows that we can identify a vector operator R in the form

Rk̂ = i

2h̄
εij
k[Pı̂,P̂] = 1

2
εij
kNı̂̂

= δk1

[
1

λ3̂(u)

(
∂

∂u3̂
ln λ2̂(u)

)
P 2̂ − 1

λ2̂(u)

(
∂

∂u2̂
ln λ3̂(u)

)
P 3̂

]

+ δk2

[
1

λ1̂(u)

(
∂

∂u1̂
ln λ3̂(u)

)
P 3̂ − 1

λ3̂(u)

(
∂

∂u3̂
ln λ1̂(u)

)
P 1̂

]

+ δk3

[
1

λ2̂(u)

(
∂

∂u2̂
ln λ1̂(u)

)
P 1̂ − 1

λ1̂(u)

(
∂

∂u1̂
ln λ2̂(u)

)
P 2̂

]
. (2.16)

Then, from (2.15), it is shown that

[
ωβ
(α · π)

|π|
]2

= −ω2

[
1 + h̄

|π|2 σ · R − eh̄

|π|2 σ
k̂εijk(∇ı̂A

̂)

]
≡ −χ2

χ ≈ ω

[
1 + h̄

2|π|2 σ · R − eh̄

2|π|2 σ
k̂εijk(∇ı̂A

̂)

]
.

(2.17)

Given (2.17), it is evident that σ · R resembles something like a magnetic dipole term due
to the curl of the electromagnetic vector potential. However, this is interpreted as a purely
co-ordinate-dependent effect due to the choice of momentum states defined in a particular
co-ordinate system. For Cartesian co-ordinates, (2.16) identically vanishes. Therefore, by
substituting into (2.15), we show that

e2iSFW/CT ≈ cosχ− sin χ

[
χ−1ωβ

(α · π)

|π|
]

≈ cosχ− sin χ

[
1 − h̄

2|π|2 σ · R + eh̄

2|π|2 σ
k̂εijk(∇ı̂A

̂)

]
β
(α · π)

|π| (2.18)

and

H
FW/CT
0 ≈

[
cosχ+ q sin χ

[
1 − h̄

2|π|2 σ · R + eh̄

2|π|2 σ
k̂εijk(∇ı̂A

̂)

]]
(α · π)

+ |π|
[
q cosχ− sin χ

[
1 + h̄

2|π|2 σ · R − eh̄

2|π|2 σ
k̂εijk(∇ı̂A

̂)

]]
β. (2.19)
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By setting the first coefficient of (2.19) to zero, we obtain the low-energy Hamiltonian,
HFW

0 , which amounts to solving for ω(q). It is straightforward to show that

ω(q) ≈
[

1 − h̄

2|π|2 σ · R + eh̄

2|π|2 σ
k̂εijk(∇ı̂A

̂)

]

× tan−1

[
−1

q

[
1 + h̄

2|π|2 σ · R − eh̄

2|π|2 σ
k̂εijk(∇ı̂A

̂)

]]

≈ −1

q
= −|π|

m
	 1, (2.20)

with the result that

HFW
0 =

[
m+ 1

2m
π · π + h̄

2m
σ · R − eh̄

2m
σk̂εijk(∇ı̂A

̂)

]
β. (2.21)

In a local Cartesian frame, (2.21) becomes

HFW
0 =

[
m+ 1

2m
π · π − eh̄

2m
σ · B

]
β, (2.22)

where the last term is the familiar magnetic dipole moment6.
Similarly, setting the second coefficient of (2.19) to zero leads to the high-energy

approximation, HCT
0 . Following the same procedure, we show that

ω(q) ≈
[

1 − h̄

2|π|2 σ · R + eh̄

2|π|2 σ
k̂εijk(∇ı̂A

̂)

]

× tan−1

[
q

[
1 − h̄

2|π|2 σ · R + eh̄

2|π|2 σ
k̂εijk(∇ı̂A

̂)

]]

≈ q

[
1 − h̄

|π|2 σ · R + eh̄

|π|2 σ
k̂εijk(∇ı̂A

̂)

]
	 1 (2.23)

and

HCT
0 ≈

[√
|π|2 +m2 − q3√

1 + q2

h̄

2m
[σ · R − eσk̂εijk(∇ı̂A

̂)]

]
(α · π)

|π| . (2.24)

Both (2.21) and (2.24) show that a small energy shift due to R emerges from applying the FW
and CT transformations to H0.

Having now obtained the means to extend the FW and CT transformations for a general
curvilinear co-ordinate frame, we proceed to derive the low- and high-energy approximations
of the Dirac Hamiltonian (2.10) for a non-uniformly accelerated spin-1/2 particle. Retaining

6 Note that εijk(∇ı̂Â) is not the kth component of the curl of A in curvilinear co-ordinates [35]. As well, all
summations involving gradients throughout this paper, as defined by (2.13), are interpreted such that, for example,

∇
k̂
∇ k̂ϕ = −[∇1̂∇1̂ + ∇2̂∇2̂ + ∇3̂∇3̂]ϕ.
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all Hermitian terms up to order 1/m2, it is therefore shown that7

HFW ≈ (1 + a · x)

[
m+ 1

2m
π · π + h̄

2m
σ · R − eh̄

2m
σkεijk(∇iA

j)

]
β − κeh̄

2m
(σ · B)β

+ h̄

4m

[
σ · (∇(a · x)× π)− h̄(∇ka

k)+ h̄

2
∇ · ∇(a · x)

]
β

+
[

1

m
(∇G) · π + h̄

2m
σkεijk(∇i∇jG)

]
β

+ eh̄2

8m2
[∇ · ∇ϕ − 2κ(∇kE

k)] + eh̄

4m2
σ · [(∇ϕ × π)− 2κ(E × π)]

− h̄2

8m2
[∇ · ∇[(ω × x) · π] + ∇k(ω × π)k] − h̄

4m2
σ · [(ω × π)× π]

+ h̄2

8m2
∇ · ∇(∇0G)+ h̄

4m2
σ · [∇(∇0G)× π] − ω · (x × π)

− h̄

2
σ · ω + eϕ + (∇0G). (2.25)

It is important to emphasize that terms such as ∇ · ∇ϕ and σk εijk(∇i ∇jG) become ∇2ϕ

and σ · [∇ × ∇G] = 0 only for Cartesian co-ordinates, due to scale functions of λk(u) = 1
in the definition of the gradient operator. Clearly, this also implies that R = 0 under the
same circumstance. Again, retaining only the leading-order Hermitian terms, we show that
the high-energy approximation of the Hamiltonian is

HCT ≈ (1 + a · x)

[[√
|π|2 +m2 − q3√

1 + q2

h̄

2m
σ · R′

]
(α · π)

|π| + κeh̄

2m
β(iα · E − σ · B)

]

− ω · (x × π)− h̄

2
σ · ω + eϕ + α · ∇G + (∇0G)+ q

2|π| (1 + a · x)
κeh̄

2m

×
[
h̄(∇kE

k)+ 2σ · (E × π)− 2h̄

|π|2 R′ · (E × π)− 2

(
1 − h̄

|π|2 σ · R′
)

B · π

]

+ q

2|π|
[
− h̄

|π|
√

|π|2 +m2

(
1 − h̄

|π|2 σ · R′
)
σkεijk∇i(a · x)πj

+ h̄2

|π|2 α · [R′ × ∇((ω × x) · π)] − h̄2

2
αkεijk(∇iω

j)

+ h̄2

|π|2 [(R′ · ω)α · π − αjR′kωjπk]

+2

(
1 − h̄

|π|2 σ · R′
) [

∇G · π − h̄2

2
(∇ka

k)

]]
β, (2.26)

where R′k = Rk − eεkij(∇iA
j).

7 For notational purposes, the indices are left uncaretted in the remainder of this paper.
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3. Spin-flip transition rate

The helicity operator h is given by

h ≡ σ · π

|π| (3.1)

and the spin-flip transition rate is

dh

dt
= i

h̄
[H ,h]. (3.2)

From (2.10) and (3.1), it is straightforward to show that the helicity precession operator is

|π|dh

dt
= σ ·

[
(ω + ia)× π − h̄

2
εklm[(∇ka

l)− i(∇kω
l)]x̂m + (ω × x)× R

+ εklm[∇(ωlxm)]πk − e(ω × x)k[(∇kAl)− (∇lAk)]x̂
l − e∇ϕ − ∇(∇0G)

]

− σ ·
[

2

h̄
∇G × π + i∇(a · x)× π + iεklm(∇k∇lG)x̂

m

]
γ5

+ σ ·
[

−m∇(a · x)+ κeh̄

2m

[
2

h̄
(1 + a · x)B × π + i(1 + a · x)εklm(∇kB

l)x̂
m

+ i∇(a · x)× B

]]
β − κeh̄

2m
σ ·

[
∇(a · x)× E + (1 + a · x)εklm(∇kE

l)x̂
m

− 2i

h̄
(1 + a · x)E × π

]
γ5β + h̄

2
[(∇kω

k)+ i(∇ka
k)] − [∇(a · x) · π + ∇ · ∇G]γ5

+ κeh̄

2m
[∇(a · x) · B + (1 + a · x)(∇kB

k)]β

+ iκeh̄

2m
[∇(a · x) · E + (1 + a · x)(∇kE

k)]γ5β, (3.3)

where x̂
m is a unit vector of the spatial triad corresponding to the general curvilinear co-ordinate

system.
It is a straightforward process to evaluate dhFW/dt and dhCT/dt using the Hamiltonians

(2.25) and (2.26). However, to do this first requires that h gets converted into an equivalent
form using the FW and CT transformations, respectively, given that

d

dt
hFW/CT = eiSFW/CT

dh

dt
e−iSFW/CT = eiSFW/CT

i

h̄
[H ,h]e−iSFW/CT

= i

h̄
[HFW/CT,hFW/CT]. (3.4)

Therefore, the transformed versions of the helicity operator are

hFW ≈ 1

|π|
{
σ · π − 1

8m2
[O, [O, σ · π]]

}
,

hCT ≈ σ · π

|π| = h,

(3.5)

where O is the set of odd operators which comprise the original Hamiltonian.
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For the low-energy approximation, it is shown that the spin-flip transition rate is

d

dt
hFW ≈ i

h̄
[HFW,h] + i

h̄
[HFW,h1], (3.6)

where h1 = −(1/8m2)[O, [O,h]],

|π| i

h̄
[HFW,h] ≈ − (1 + a · x)

[
1

2m
σ · ∇(π · π)+ h̄

2m
[(∇kR

′k)+ iσkεijk(∇iR
′j)]

+ 1

m
σ · (R′ × π)

]
β − σ · ∇(a · x)

[
m+ 1

2m
π · π

]
β

+ κe

m
σ · (B × π)β + κeh̄

2m
[(∇kB

k)+ iσkεijk(∇iB
j)]β

− h̄

2m
[∇(a · x) · R′ + σkεijk(∇i∇jG)+ iσ · [∇(a · x)× R′]

+ iσj∇ i[∇i∇j − ∇j∇i]G]β − 1

2m
[σ · [(∇(a · x)× π)× π

+ 2∇(∇G · π)] + 2σj([∇i∇j − ∇j∇i]G)π
i]β

+ h̄

4m

[
− [∇k(∇(a · x)× π)k] + h̄σ · ∇(∇ka

k)− h̄

2
σ · ∇(∇ · ∇(a · x))

− iσkεijk[∇i(∇(a · x)× π)j]

]
β + h̄2

8m2
σ · ∇[∇ · ∇[(ω × x) · π]

+ [∇k(ω × π)k] + e[∇k(2κE
k + ∇kϕ)] − ∇ · ∇(∇0G)]

+ h̄

4m2
[[∇k[(ω × π)× π + e(2κE − ∇ϕ)× π − ∇(∇0G)× π]k]

+ iσkεijk[∇i[(ω × π)× π + e(2κE − ∇ϕ)× π − ∇(∇0G)× π]j]]

+ 1

2m2
σkεijk[(ω × π)× π + e(2κE − ∇ϕ)× π − ∇(∇0G)× π]iπj

+ σ · [(ω × x)× R] − eσj(ω × x)i[(∇iAj)− (∇jAi)]

+ h̄

2
[(∇kω

k)+ iσkεijk(∇iω
j)] + σ · (ω × π)

+ εklm[σ · ∇(ωlxm)]πk − σ · ∇(eϕ + (∇0G)) (3.7)
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and

|π| i

h̄
[HFW,h1] ≈ − h̄2

8m2
[σk(ω × x)j[∇j∇k(∇iπ

i)] − σ · [ω × ∇(∇kπ
k)]]

+ h̄2

4m2
[−(ω × x) · ∇[σk∇j[Njk + e(∇jAk)− e(∇kAj)]]

− σkεijkω
i[(∇mN

mj)+ e(∇m∇mAj)− e(∇m∇jAm)]]

+ ih̄2

4m2
[(ω × x) · ∇[∇k[R

k − eεikj(∇iA
j)]] + [Nmn + e(∇mAn)

− e(∇nAm)](∇mωn)− iσkεijk[N
mi + e(∇mAi)− e(∇ iAm)](∇mω

j)]

− ih̄2

2m2
[σk(ω × x) · ∇[[Nmk + e(∇mAk)− e(∇kAm)]π

m]

− σkεijkω
i[Nmj + e(∇mAj)− e(∇jAm)]πm]. (3.8)

In a similar fashion, forHCT = H0+qH1, the spin-flip transition rate for an ultra-relativistically
moving spin-1/2 particle follows from (3.4), where

|π| i

h̄
[H0,h] = − 1

|π|
√

|π|2 +m2[∇(a · x) · π + iσ · [∇(a · x)× π]]γ5

+ q3√
1 + q2

h̄

2m

1

|π| [[σ · ∇(a · x)]R′ · π + i[∇(a · x)] · (R′ × π)

− σ · [∇(a · x)× (R′ × π)]]γ5 + (1 + a · x)

×
[

q3√
1 + q2

h̄

2m

1

|π|

[
[σ · ∇(R′ · π)] + 2i

h̄
σ · [(R′ × π)× π]

+ i[∇k(R
′ × π)k] − σkεijk[∇i(R

′ × π)j]

]]
γ5

+ κeh̄

2m
σ ·

[
2

h̄
(1 + a · x)B × π + i(1 + a · x)εklm(∇kB

l)x̂
m

+ i∇(a · x)× B

]
β − κeh̄

2m
σ ·

[
∇(a · x)× E + (1 + a · x)εklm(∇kE

l)x̂
m

− 2i

h̄
(1 + a · x)E × π

]
γ5β + κeh̄

2m
[∇(a · x) · B + (1 + a · x)(∇kB

k)]β

+ iκeh̄

2m
[∇(a · x) · E + (1 + a · x)(∇kE

k)]γ5β
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− σ ·
[

2

h̄
∇G × π + iεklm(∇k∇lG)x̂

m

]
γ5 + h̄

2
(∇kω

k)− ∇ · ∇Gγ
5

+ σ ·
[
ω × π + ih̄

2
εklm(∇kω

l)x̂
m + (ω × x)× R + εklm[∇(ωlxm)]πk

− e(ω × x)k[(∇kAl)− (∇lAk)]x̂
l − e∇ϕ − ∇(∇0G)

]
(3.9)

and

|π| i

h̄
[H1,h] = − 1

|π|
κeh̄

2m
[∇(a · x) · (E × π)+ iσ · [∇(a · x)× (E × π)]

− [σ · ∇(a · x)]B · π] + 1

|π| (1 + a · x)
κeh̄

2m

[
−[[∇k(E × π)k]

+ iσkεijk[∇i(E × π)j]] − 2

h̄
σ · [(E × π)× π] + σ · ∇(B · π)

]

+ 1

2|π|

[
h̄

|π|
√

|π|2 +m2

[
[∇k(∇(a · x)× π)k] + 2

h̄
σ · [(∇(a · x)× π)× π]

+ iσkεijk[∇i(∇(a · x)× π)j]

]
+ 2h̄

|π|2
[
(∇kR

′k)+ iσkεijk(∇iR
′j)

+ 2

h̄
σ · (R′ × π)

]
∇G · π − 2σ · ∇(∇G · π)

+ 2h̄

|π|2 [R′ · ∇(∇G · π)+ iσ · [R′ × ∇(∇G · π)]]

]
β. (3.10)

After neglecting the non-Hermitian term −(ih̄/2)(α·a) in (2.10), it is straightforward to confirm
that (3.9) and (3.10) reduce to (3.3) in the limit as q → 0.

4. Spin evolution

It is useful to evaluate the spin evolution of a spin-1/2 particle in non-inertial motion, such as
that due to a circular orbit in an ideal storage ring. This requires that the operator expressions for
the helicity transition rate must be converted into amplitudes and projected into the laboratory
frame. Suppose that a beam of spin-1/2 particles follows a circular orbit in an idealized storage
ring, allowing for vertical and horizontal fluctuations about the beam’s mean trajectory. Then,
by adopting cylindrical co-ordinates (r, θ, z, τ) to describe an accelerated frame tangent to the
beam orbit, where

P1 = −ih̄
∂

∂r
, P2 = −ih̄

r

∂

∂θ
, P3 = −ih̄

∂

∂z
, (4.1)

it follows that R = (0, 0, −P2/r). Assuming a mean orbital radius of r0 and orbital frequency
ofω0 in the laboratory frame, the relationship between the accelerated frame and the laboratory
frame in Cartesian co-ordinates (x, y, z, t), whose origin is at the centre of the storage ring, is
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given by [8, 36]

x = (r0 + δr) cos(γω0τ)− γ(r0δθ) sin(γω0τ),

y = (r0 + δr) sin(γω0τ)+ γ(r0δθ) cos(γω0τ),

t = γ(τ + r2
0ω0δθ),

(4.2)

where δr and δθ are the radial and angular fluctuations about the mean orbit, γ = (1−ω2
0 r

2
0)

−1/2

and τ is the proper time.
To obtain the spin-flip transition amplitude, it is necessary to adopt the Dirac representation

and evaluate it in the instantaneous rest frame of the particle. Therefore, given the corre-
sponding ket vectors [38]

|+〉up ≡




(
1
0

)
(

0
0

)

 , |−〉up ≡




(
0
1

)
(

0
0

)

 ,

(4.3)

|+〉dn ≡




(
0
0

)
(

1
0

)

 , |−〉dn ≡




(
0
0

)
(

0
1

)

 ,

it is shown that the spin-flip transition amplitude due to some quantum operator Q is

〈Q〉 ≡ 〈∓|Q|±〉up/dn. (4.4)

Then for some arbitrary spin-independent quantum number K coupled to σ, it follows that

〈(σ · K)〉 = (x̂1 ± ix̂2) · K, (4.5)

〈(σ · K)β〉 = ±(x̂1 ± ix̂2) · K, (4.6)

where all other matrix elements vanish, and the overall ± in (4.6) denotes the sign of the
contribution specific to the up/dn state, respectively.

It is straightforward to verify [12] that the unit vectors x̂1(τ) and x̂2(τ) are related to the
time-independent Cartesian unit vectors x̂ and ŷ in the laboratory frame by

x̂1(τ)± ix̂2(τ) = (x̂ ± iŷ)e∓iγω0τ = (x̂ ± iŷ)e∓iω0t . (4.7)

With (4.5) and (4.6), it is formally shown that the rate of change of the spin-flip transition is〈
dh(t)

dt

〉
= 1

|π| (x̂
1(t)± ix̂2(t)) · [�0 ± �1] = 1

|π| (x̂ ± iŷ) · [�0 ± �1]e∓iω0t , (4.8)

where �0 and �1 are the amplitudes corresponding to (4.5) and (4.6), respectively. It then
follows that the spin evolution is

〈h(t)〉 = 1

|π| (x̂ ± iŷ) · π +
∫ t

0

〈
dh(t′)

dt

〉
dt′

= 1

|π| (x̂ ± iŷ) ·
[
π ± i

ω0
(�0 ± �1)(e∓iω0t − 1)

]
. (4.9)
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By evaluating (4.5) and (4.6) for each of the cases under consideration, the amplitudes
corresponding to the Dirac Hamiltonian in its original representation, and also its FW- and
CT-transformed counterparts, can be obtained. Therefore, from (3.3), it is shown that

�0
Dirac = ω × π + ih̄

2
εijk(∇iω

j)x̂k + (ω × x)× R + εklm[∇(ωlxm)]πk

− e(ω × x)k[(∇kAl)− (∇lAk)]x̂
l − e∇ϕ − ∇(∇0G), (4.10)

�1
Dirac = −m∇(a · x)+ �1

κ, (4.11)

�1
κ = κeh̄

2m

[
2

h̄
(1 + a · x)B × π + i(1 + a · x)εijk(∇iB

j)x̂k + i∇(a · x)× B

]
, (4.12)

for the helicity evolution involving the original Dirac Hamiltonian, where ω = γ2ω0 ẑ

[8, 37] in the rotating frame of reference. In an ideal storage ring, the corrections proportional
to a found in (4.12) and several other expressions for � given below are really of second-
order because B = mω/e. The latter relationship also ensures that �1

κ is mass-independent.
The remaining terms in (4.12) do not contribute to g− 2 experiments because of geometrical
constraints or because B is uniform. They would contribute, however, to experiments where
these constraints were relaxed.

The first and second terms in (4.10) originate from the Mashhoon coupling in the
Hamiltonian and the second term would not occur in experiments with ω constant. The first
and fourth terms play an important role in g − 2 experiments and are discussed below. The
sixth term is well known and can also be found in the calculation of Sakurai [38]. Together,
the fifth and sixth terms form something akin to the Lorentz force in a rotating frame.

The third term vanishes in Cartesian co-ordinates because that case involves only linear
momenta and the commutator in (2.16) therefore vanishes. However, when the coordinates are
not Cartesian, the commutator of the momenta mixes linear momentum and angular momentum
components and, in general, does not vanish. Its contribution to the precession equation is
σ ·[(ω×x)×R] and has the same dimensions as the term σ ·(ω×p) that appears in the Thomas-
BMT equation [39]. The third term may be small for the geometry of g− 2 experiments, but
not so for other types of spin motion like those considered in spin rotators and Siberian snakes.

The last term in (4.10) is new and has interesting consequences. In fact, it follows from
(4.8)–(4.12) that in the absence of electromagnetic potentials and in the limit as m → 0,〈

dh

dt

〉
m=0

= − 1

|π| (x̂
1 ± ix̂2) · ∇(∇0G), (4.13)

where, for the case of a Cartesian co-ordinate frame,

∇i(∇0G) = − 1
2 [γ00,ip

0 + (γ0j,i + γij,0 − γ0i,j)p
j]. (4.14)

For instance, given a stationary metric of the type shown by Hehl and Ni [20], we obtain

∇i(∇0G) = −(a · x),ip
0 − 1

2 [εjkl(ωkxl),i − εikl(ω
kxl),j]pj

≈ aip
0 + εijkω

jpk �= 0. (4.15)

This result is somewhat surprising, but not unlike the electromagnetic case where the presence
of an electric field also violates helicity conservation [38]. The fact that ḣ �= 0 here challenges
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commonly held views that the helicity is a constant of motion for massless particles [34].
However, particles are known to acquire an effective mass when acted upon by inertia
gravitation. By multiplying (2.1) on the left by (−iγν(x)Dν − m/h̄) and using the relations
[Dµ,Dν] = −iσαβRαβµν, σµνσabRµναβ = 2R, where R is the Ricci curvature scalar, we can
obtain (

gµνDµDν − R

4
+ m2

h̄2

)
ψ(x) = 0. (4.16)

Weyl [40] was the first one to suggest that meff ≡ h̄
√
(m/h̄)2 − R/4 behaves as an effective

mass. Notice that meff �= 0 even when m = 0, and that R �= 0 when it represents, in its
linearized form, pure inertia.

A second interesting result follows from the same equations. By choosing Cartesian
co-ordinates so that the term (ω × x) × R vanishes, dropping second-order terms in ω, and
combining the remaining first and fourth terms in (4.10) with the term (κe/m)B ×π in (4.11),
we obtain 〈

dh

dt

〉
 1

|π| (x̂
1 ± ix̂2) ·

[
±κe
m

B × π + εijk(∇ωi)xjπk
]
. (4.17)

The Mashhoon term therefore disappears irrespective of whether ω is constant or not. The first
term proportional to κ and withB = mω/e on the right-hand side of (4.17) is the term normally
measured in g− 2 experiments. If ω is inhomogeneous, then the second term also contributes
to the helicity precession. This term can then be neglected only for particular geometrical
configurations of the parameters involved.

From (3.7) and (3.8), the corresponding expressions for the FW-transformed Hamil-
tonian are

�0
FW = �0

Dirac + 1

2m2
εijk[(ω × π)× π + e(2κE − ∇ϕ)× π − ∇(∇0G)× π]iπjx̂k

+ h̄2

8m2
[∇[∇ · ∇[(ω × x) · π] + [∇k(ω × π)k] + e[∇k(2κE

k + ∇kϕ)]

− ∇ · ∇(∇0G)] − [(ω × x)j[∇j∇k(∇iπ
i)]x̂k − ω × [∇(∇kπ

k)]]]

+ h̄2

4m2
[(ω × x) · ∇[(∇1R

3)x̂2 − (∇2R
3)x̂1 − e((∇j∇jAk)− (∇j∇kAj))x̂

k]

+ [R3[ε2
jk(∇1ω

j)− ε1
jk(∇2ω

j)] + εijke((∇mA
i)− (∇ iAm))(∇mωj)]x̂k

+ ωi[ε2
ik(∇1R

3)− ε1
ik(∇2R

3)+ εijke((∇m∇mA
j)− (∇m∇jAm))]x̂

k]

+ ih̄

4m2
εijk∇i[(ω × π)× π + e(2κE − ∇ϕ)× π − [∇(∇0G)] × π]jx̂k

− ih̄2

2m2
[(ω × x) · ∇[R3(π1x̂2 − π2x̂1)+ e[(∇jAk)− (∇kAj)]π

jx̂k]

+ ωi[R3(ε2
ikπ

1 − ε1
ikπ

2)+ εijke[(∇mA
j)− (∇jAm)]π

m]x̂k] (4.18)
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and

�1
FW = −(1 + a · x)

[
1

2m
∇(π · π)+ 1

m
σ · (R′ × π)+ ih̄

2m
εijk(∇iR

′j)x̂k
]

− ∇(a · x)

[
m+ 1

2m
π · π

]
+ κe

m
σ · (B × π)+ iκeh̄

2m
εijk(∇iB

j)x̂k

− h̄

2m
εijk(∇i∇jG)x̂

k − ih̄

2m
[∇(a · x)× R′ + (∇j[∇j∇k − ∇k∇j]G)x̂

k]

− 1

2m
[(∇(a · x)× π)× π + 2∇(∇G · π)] − 1

m
([∇j∇k − ∇k∇j]G)π

jx̂k

− h̄2

8m
∇(∇ · ∇(a · x))− ih̄

4m
εijk[∇i(∇(a · x)× π)j]x̂k. (4.19)

Again assuming a local Cartesian frame, the leading-order contributions to the amplitude
in the low-energy approximation, of order 1/m, come from the second and sixth terms of (4.19),
which yield the total magnetic moment term [(1+κ)e/m]σ ·(B×π). Other noteworthy leading-
order contributions are due to the 11th term in (4.19), which come from the acceleration-induced
spin-orbit coupling term first found by Hehl and Ni [17, 20], and also the 12th and 13th terms
due to the gravitational energy redshift term found by Singh and Papini [17]. As for terms of
order 1/m2, the leading contributions [17] are due to the second to fourth terms found in (4.18),
namely the spin–orbit coupling from the Mashhoon effect, electric field and gravitational field,
respectively. In addition, the seventh and eighth terms of (4.18) identify contributions from the
Darwin energy terms due to electromagnetism [38] and gravitation, also first found by Singh
and Papini [17], and later by Obukhov [41]. All other terms in (4.18) and (4.19) involving
gradients of primarily small quantities can be safely regarded as negligible by comparison.

From (3.9) and (3.10), it is shown that the amplitudes for the CT-transformed Hamil-
tonian are

�0
CT = �0

Dirac + 1

|π|
κeh̄

2m

[
∇(a · x)B · π − i∇(a · x)× (E × π)

+ (1 + a · x)

[
∇(B · π)− 2

h̄
(E × π)× π − iεijk[∇i(E × π)j]x̂k

]]
(4.20)

and

�1
CT = �1

κ + h̄

2|π|2
√

|π|2 +m2

[
2

h̄
(∇(a · x)× π)× π + iεijk[∇i(∇(a · x)× π)j]x̂k

]

+ h̄

|π|3
[

2

h̄
(R′ × π)+ iεijk(∇iR

′j)x̂k
]

∇G · π

− 1

|π|∇(∇G · π)+ ih̄

|π|3 R′ × ∇(∇G · π). (4.21)

Given that the CT-Hamiltonian is an ultrarelativistic approximation of the original Dirac
Hamiltonian, we expect that many of the terms in (4.20) and (4.21) will be small compared
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with the contributions due to the original Dirac Hamiltonian if we disregard those due to
inhomogeneous fields. Nonetheless, there are a few noteworthy terms which should make a
meaningful contribution. One of them is the fifth term in (4.20), a spin–orbit coupling due to
the electric field which yields a term (1/|π|)(κe/m)(E×π)×π. The other contributions worth
noting are the second, fourth, and sixth terms of (4.21), which are due to the ultrarelativistic
analogues of the Hehl–Ni spin–orbit coupling and gravitational energy redshift terms found in
the low-energy approximation.

5. Chiral transition rate for a relativistic spin-1/2 particle in a gravitational field

It is of interest to also study the effect of inertia on the chirality precession of spin-1/2
particles, for comparison with the helicity precession. Given that the γ5 operator in the chiral
representation is

γ5 =
(

1 0
0 −1

)
, (5.1)

the projection operators for isolating right- and left-handed states are defined as

PR ≡ 1
2 (1 + γ5), PL ≡ 1

2 (1 − γ5), (5.2)

ψ ≡
(
ϕR

ϕL

)
. (5.3)

Equivalently, (5.2) can be written as

P± = 1
2 (1 ± γ5). (5.4)

Applying the CT transformation on (5.4) leads to

PCT± ≈ P± ± ω(q)

2|π| γ
5β(α · π). (5.5)

Then, to leading order in q,

ṖCT± ≈ ±q
[

i

h̄
H1γ

5β − 1

2

(
1 − h̄

|π|2 σ · R′
) {

i

h̄
[H0,h] + 1

|π| (α · π) · i

h̄
[H0,β]βγ5

}]
β.

(5.6)

Explicitly, the chirality transition rate (5.6) is given by (3.9) and

1

|π| (α · π) · i

h̄
[H0,β]β = 2

|π|2
[√

|π|2 +m2 [∇(a · x) · π + iσ · [∇(a · x)× π]]

− q3√
1 + q2

h̄

2m
[[σ · ∇(a · x)]R′ · π + i∇(a · x) · (R′ × π)− σ · [∇(a · x)

× (R′ × π)]]

]
+ 2i

h̄|π|2 (1 + a · x)

[√
|π|2 +m2(π · π + h̄σ · R′)

− q3√
1 + q2

h̄

2m
[σ · [−ih̄∇(R′ · π)+ (R′ · π)π] + h̄[[∇k(R

′ × π)k]

+ iσkεijk[∇i(R
′ × π)j]] + σ · [(R′ × π)× π]]

]
+ 2

|π| [(∇ · ∇G)

+ iσkεijk(∇i∇jG)] + 2i

h̄|π| [∇G · π − iσ · [∇G × π]]. (5.7)
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Excluding the contributions from the anomalous magnetic moment terms, it is clear
from (5.6) that

ṖCT±|m=0 = 0, (5.8)

and so the chirality is a constant of the motion for massless particles. This difference
between (4.13) and (5.8) strongly suggests that helicity and chirality describe entirely different
physical processes, and their respective interpretations may require closer investigation. A
comprehensive study of chirality transitions in a Schwarzschild field is presented in [42].

6. Conclusions

Inertial–gravitational fields affect quantum particles in different ways. They interact with
particle spins and give rise to quantum phases that can be measured in principle by
interferometric means. In this case G must be calculated over a closed space–time path
that can be obtained, for instance, by comparing the phase of a particle at the final position Pf

at the final time tf with that of an identical particle at the the same final point Pf , but at the
initial time ti.

Through the Hamiltonian, the fields can also affect the energy levels and the time
evolution of observables. In the latter case, inertial fields change the helicity and chirality
of particles in ideal storage rings. This has been studied in some detail in sections 3–5. The
results independently confirm that the spin-rotation coupling compensates the much larger
contribution that comes from the g = 2 part of the magnetic moment of a pure Dirac particle.
Without this cancellation, g−2 experiments may be more difficult to perform with the present
accuracy of 0.7 ppm [43].

In the more general case of an inhomogeneous ω, the Mashhoon term per se essentially
disappears, but a new term 1/|π| εijk(ωi,1 + iωi,2)xj πk contributes to the spin precession. In
the lowest approximation, the spin precesses with the same angular frequency ω of the particle
itself. The ratio of this new term to ω is  [(∇ω)/ω]x. It may be possible to conceive of a
physical situation in which this term can be observed, which would extend our knowledge of
rotational inertia.

A second interesting result is represented by (4.13), which states that helicity is not
conserved in the presence of first-order inertial and gravitational fields, even when the mass
of the particle vanishes. The corresponding result (5.8) for chirality gives a vanishing result.
It seems, therefore, that first-order inertia gravitation can distinguish between helicity and
chirality. This may be due to the approximation itself. It has, in fact, been mentioned that
particles acquire an effective mass when immersed in gravitational fields. This result extends
to inertia because, in the weak-field approximation, R = − 1

2 ∂ν∂
νγµ

µ need not vanish. In
the general case, however, R = 0 rigorously for inertial fields, but not necessarily so for true
gravitational fields. Finally, it may be exceedingly difficult to subject massless fermions to
acceleration and rotation as required, for instance, by (4.14) and (4.15). In this sense, it may
be said that massless fermions strive to conform to a sort of helicity conservation.
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